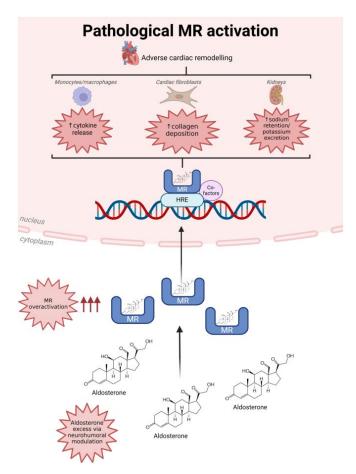
Mineralocorticoid Receptor Antagonists & SGLT2 Inhibitors

Foundational Therapies in Heart Failure: Evidence-to-Practice

11/06/2025
Anthony Peterson, PharmD, BCPS
Clinical Pharmacist
Marimn Health


Learning Objectives

- Identify the distinct pathophysiological pathways targeted by Mineralocorticoid Receptor Antagonists (MRAs) and Sodium-Glucose Cotransporter 2 (SGLT2) inhibitors in heart failure.
- **Describe** the current guideline-based recommendations for initiating MRA and SGLT2 inhibitor therapy across the spectrum of heart failure (HFrEF, HFmrEF, HFpEF).
- Recognize key practical considerations for implementing MRA and SGLT2 inhibitor therapy, including patient selection criteria (eGFR, K+ levels), essential safety monitoring protocols, and common adverse effects.

Two Key Pathophysiological Targets in Heart Failure

- 1. RAAS Overactivation (Classic Neurohormonal Pathway):
 - Leads to excess Aldosterone, causing long-term damage like scarring (fibrosis) and fluid retention.
 - Target: Mineralocorticoid Receptor (MR)
- 2. Cardiorenal-Metabolic Dysregulation (Novel Pathway):
 - Involves the body mismanaging Na⁺ and sugar, leading to poor heart energy use and kidney strain.
 - Target: Sodium-Glucose Cotransporter 2 (SGLT2)

MRA Class: Steroidal vs. Non-Steroidal

Steroidal MRAs (Spironolactone, Eplerenone):

- Highly effective in HFrEF; established long-term mortality benefit.
- Safety challenge: Hyperkalemia (high potassium) and Kidney Disease (CKD)

Non-Steroidal MRA (Finerenone):

- Acts on heart and vascular tissue with less effect on the kidney's potassium balance, leading to a lower risk of Hyperkalemia.
- Shown benefit in HFmrEF/HFpEF and Diabetic Kidney Disease.

SGLT2i Class: Beyond Diuresis (The Cardiorenal Protective Effect)

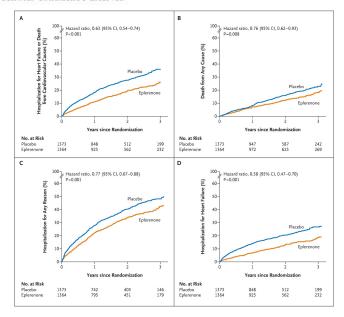
- Key Protective Mechanisms:
- Energy Boost: Shifts the heart's fuel source to more efficient compounds, providing improved cardiac energy.
- Better Heart Function: Works directly on heart cells to regulate minerals, leading to improved pumping power and rhythm stability.
- **Hemodynamics:** Causes moderate fluid removal and relaxes blood vessels, **reducing the heart's workload**.
- Renal Protection: Reduces high pressures inside the kidney, helping to preserve kidney function.

HFrEF (EF ≤ 40%) The Four Pillars

- Guideline-Directed Medical Therapy (GDMT) mandates initiation and up-titration of all four classes (Class I, Level of Evidence A):
- ARNI / ACEi / ARB: RAAS Inhibition
- Evidence-Based Beta-Blocker: Neurohormonal Modulation
- MRA: Aldosterone Blockade
- SGLT2 Inhibitor: Metabolic/Hemodynamic Modulation

Landmark MRA Trials in HFrEF

- RALES (1999) Spironolactone: Cut the risk of all-cause mortality by 30% in severe HFrEF (NYHA III-IV).
- EPHESUS (2003) Eplerenone: Showed clear mortality benefit post-MI with HFrEF.
- EMPHASIS-HF (2011) Eplerenone: Significantly reduced CV death/HF hospitalization in mild HFrEF (NYHA II).

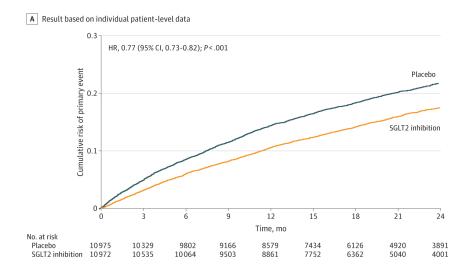

Clinical Takeaway

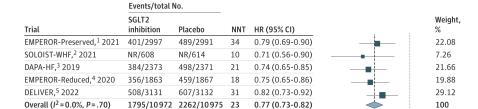
Sustained, long-term survival benefit for patients.

Table 3. Relative Risks of the Combined End Points of Death or Hospitalization in the Spironolactone Group.*

END POINT	RELATIVE RISK (95% CI)	P Value
Death from cardiac causes or hospitalization for cardiac causes	0.68 (0.59-0.78)	< 0.001
Death from any cause or hospitalization for any reason	0.77 (0.68-0.86)	< 0.001
Death from any cause or hospitalization for cardiac causes	0.68 (0.60-0.77)	< 0.001

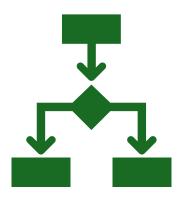
^{*}Each analysis represents the time to the first occurrence of an event. For patients with both events, the analysis includes only the first event. CI denotes confidence interval.





Landmark SGLT2i Trials in HFrEF

- DAPA-HF (2019) & EMPEROR-Reduced (2020):
 - Consistently reduced the risk of CV death or HF hospitalization by about 25%.
 - Benefit seen quickly, with event curve separation observed within 30 days of initiation.
- Conclusion: The immediate clinical benefit and favorable safety profile make SGLT2i an excellent choice for early initiation.



HR (95% CI)

HFmrEF (EF 41-49%) & HFpEF (EF ≥ 50%)

HFpEF: Highly complex, often driven by comorbidities (HTN, AFib, Obesity, CKD). Focus is on reducing high **HF hospitalization rates**.

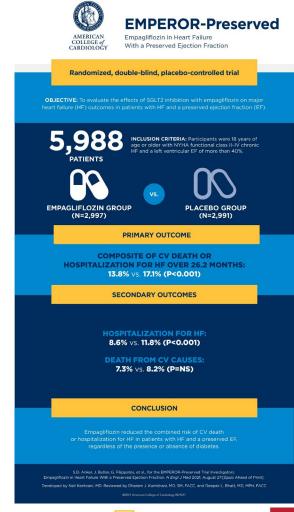
HFmrEF: dynamic trajectory; patients benefit from multiple drug classes.

Key MRA Trials in HFpEF / HFmrEF: The Non-Steroidal Advance

- TOPCAT (2014) Spironolactone: Overall neutral result for the primary composite outcome (time to cardiovascular death, resuscitated cardiac arrest, or hospitalization for HF). However, it did show a benefit in reducing hospitalizations in the North American subgroup.
- FINEARTS-HF (2024) Finerenone: Showed a 16% reduction in the primary composite endpoint (total worsening HF events [hospitalizations or urgent HF visits] or death from cardiovascular causes) across HFmrEF/HFpEF (EF ≥ 40%).

Clinical Significance:

• The newer non-steroidal MRA (finerenone) provides the strongest, most consistent evidence for an MRA in the broader non-HFrEF population (EF ≥ 40%).


Objective: Assess impact of finerenone vs placebo in patients with HFmrEF and HFpEF on CV outcomes 3003 finerenone 10mg, 20mg or 40mg daily Inclusion Criteria - HFmrEF or HFpEF - eGFR < 25 ml/min/1.73 m² - NYHA II-IV - Structural heart disease or elevated natriuretic peptides Page 1 Page 1 Page 2 Page 2 Page 2 Page 3 Page 3 Page 3 Page 3 Page 3 Page 4 Page 4

Key SGLT2i Trials in HFpEF / HFmrEF: Broad Benefit

- EMPEROR-Preserved (2021) & DELIVER (2022):
 - Consistently reduced the risk of CV death or HF hospitalization by about 18-21%.
 - **Pooled Analysis:** Confirms benefit across all HF categories (HFrEF, HFmrEF, HFpEF).
- Guideline Impact: SGLT2i are now a Class 2a recommendation (Reasonable to use) in all patients with EF > 40% to reduce HF hospitalizations and CV mortality.

Special Populations

Population	SGLT2i Guidance	MRA Guidance	
Diabetes	Class I for T2D + CVD/high risk. Synergistic cardiorenal benefit.	Effective regardless of T2D status.	
CKD	Generally safe down to eGFR ~20 mL/min for HF benefit. Slows progression of CKD.	Contraindicated if eGFR < 30 mL/min. Use extreme caution if eGFR 30-50 mL/min	
Potassium	Associated with small Potassium reductions, potentially mitigating MRA-induced hyperkalemia.	Initiate only if Potassium< 5.0. Hold if potassium> 5.5.	
Post-MI	Role emerging in reduced EF post-MI.	Proven benefit in HFrEF post-MI (EPHESUS - Class 1B).	

Practical Considerations & Safety Monitoring

MRA (Spironolactone/Eplerenone) Monitoring:

Hyperkalemia is the Main Risk:

- Check **Potassium and SCr** before initiation, at 3 days, at 7 days, and then monthly for the first 3 months.
- Action: Hold MRA if potassium > 5.5 or if eGFR falls below 30 mL/min

Adverse Effects:

- **Spironolactone:** Can cause painful **gynecomastia** (switch to eplerenone or finerenone).
- All MRAs: Use caution with concurrent NSAIDs, which increase the risk of hyperkalemia.

SGLT2i (Dapagliflozin/Empagliflozin) Monitoring:

Volume Status:

 The SGLT2i diuretic effect may cause hypotension. Consider reducing loop diuretic dose (e.g., Furosemide) before or upon initiation to prevent dizziness and falls.

Rare, Serious Risk:

 Euglycemic DKA: Very rare, but serious. Instruct all patients (diabetic and non-diabetic) to hold the drug 3-4 days before elective surgery or if seriously ill (fever, vomiting).

Common Effects:

• **GU Infections:** More common, especially mycotic infections. Counsel patients on hygiene; easily managed with standard antifungals.

MRAs & SGLT2i Across the HF Spectrum

Heart Failure Type	HFrEF (≤ 40%)	HFmrEF (41-49%)	HFpEF (≥ 50%)
MRA Recommendation	Class I-A (Mortality)	Class IIb-C (May consider)	Class IIb-C (May consider)
SGLT2i Recommendation	Class I-A (Mortality)	Class IIa-B (Reasonable)	Class IIa-B (Reasonable)
Primary Goal	REDUCE MORTALITY & Hospitalizations	Reduce Hospitalizations & Worsening HF	Reduce Hospitalizations & Worsening HF

Key Points

Immediate Action: Start and optimize all Four Pillars therapies as soon as possible in HFrEF

Broaden Application: SGLT2i may be initiated (Level 2a) in patients with EF > 40% to reduce high hospitalization rates.

Harness New Tools: Consider finerenone, particularly in patients with EF ≥ 40% and/or high risk of hyperkalemia/CKD to achieve MRA benefit.

Monitor Closely, Don't Delay: While potassium and kidney function checks are required, manageable side effects should **not prevent** patients from getting this life-saving therapy.

Optimal management requires early initiation of these foundational therapies to improve outcomes across the heart failure spectrum.

Thank You!

Questions???

References

- Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;145(18):e895-e1032. doi:10.1161/CIR.0000000000001063 2
- American College of Cardiology. *Use of SGLT2 Inhibitors in the Management of Patients with Heart Failure Pocket Guide*. American College of Cardiology; 2024
- Chang J, Ambrosy AP, Vardeny O, Van Spall HGC, Mentz RJ, Sauer AJ.
 Mineralocorticoid antagonism in heart failure: established and emerging
 therapeutic role. *JACC Heart Fail*. 2024;12(12):1979-1993.
 doi:10.1016/j.jchf.2024.08.007
- Ferreira JP, Pitt B, Zannad F. Mineralocorticoid receptor antagonists in heart failure: an update. *Circ Heart Fail*. 2024;17(12):e011629. doi:10.1161/CIRCHEARTFAILURE.124.011629

