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Obesity’s metabolic heterogeneity is not fully captured by body mass 
index (BMI). Here we show that deep multi-omics phenotyping of 1,408 
individuals defines a metabolome-informed obesity metric (metBMI) 
that captures adipose tissue-related dysfunction across organ systems. In 
an external cohort (n = 466), metBMI explained 52% of BMI variance and 
more accurately reflected adiposity than other omics models. Individuals 
with higher-than-expected metBMI had 2–5-fold higher odds of fatty 
liver disease, diabetes, severe visceral fat accumulation and attenuation, 
insulin resistance, hyperinsulinemia and inflammation and, in bariatric 
surgery (n = 75), achieved 30% less weight loss. This obesogenic signature 
aligned with reduced microbiome richness, altered ecology and functional 
potential. A 66-metabolite panel retained 38.6% explanatory power, with 90% 
covarying with the microbiome. Mediation analysis revealed a bidirectional, 
metabolite-centered host–microbiome axis, mediated by lipids, amino 
acids and diet-derived metabolites. These findings define an adipose-linked, 
microbiome-connected metabolic signature that outperforms BMI in 
stratifying cardiometabolic risk and guiding precision interventions.

Obesity is increasingly recognized as a chronic, multifactorial and 
progressive disease, driven by excess adiposity and leading to dys-
function at the tissue, organ and whole-body levels1,2. It is the lead-
ing cause of type 2 diabetes (T2D) and a significant contributor to 
cardiometabolic morbidity and mortality3. However, diagnosis still 
relies on BMI—a surrogate with limited capacity to capture individual 
cardiometabolic risk4. Indeed, 20–30% of individuals with T2D do 
not suffer from BMI-defined obesity5, and a significant number of 
global cardiovascular deaths linked to abnormal BMI occur in those 
below the obesity threshold6. This has prompted calls to refine diag-
nostic criteria to prevent undertreatment of at-risk individuals not  
identified by BMI2,7.

Although BMI may miss functional changes associated with obe-
sity, multi-omics approaches offer a metabolically informed view of 
health by integrating signals across organs and systems, enabling 
more precise characterization of obesity-related risk and clinically 
meaningful obesity heterogeneity8,9. Circulating metabolites, shaped 
by host genetics, diet and the gut microbiome, offer a systems-level 
readout of metabolic health beyond excess weight8,10: an obesogenic 
metabolite signature is linked to a two-fold higher risk of future T2D, 
up to a five-fold increase in cardiovascular events and an 80% increase 
in mortality9, highlighting the potential of metabolomics for early risk 
stratification8,9. However, the phenotypic diversity underlying this 
signature and its drivers remains insufficiently defined.
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Consistently, the circulating metabolome provided the most phys-
iologically informative signal for predicting obesity among individual 
omics layers, particularly in capturing the strongest associations with 
adiposity-related traits (Fig. 1a,b): metabolite-predicted BMI showed 
significantly stronger correlations with ground truth measures, such as 
waist circumference and VAT and SAT area, than BMI estimates derived 
from the proteome, diet or even the combined multi-omics model 
(Fig. 1b). These results position the metabolome as a more biologically 
grounded proxy of obesity-related fat accumulation.

The combined multi-omics model achieved the highest overall 
predictive performance (median variance explained (VEmed) 0.8 for 
SAT area to 0.85 for BMI; Fig. 1a and Supplementary Table 2). However, 
contributions across layers were not additive, reflecting overlapping 
molecular signals. The second-highest overall predictive performance 
was observed for the proteome, which explained substantial variance 
for several traits (for example, VEmed 0.74 for BMI and waist and 0.71–
0.74 for VAT and SAT; Fig. 1a and Supplementary Table 2). Nonetheless, 
its performance did not significantly exceed that of the metabolome 
for several traits (for example, SAT area; Bonferroni-adjusted P = 0.3), 
and the associations with central adiposity traits were less pronounced 
(Fig. 1b). This observation is further supported by recent intervention 
data, where proteome-predicted BMI remained stable despite reduc-
tions in BMI, metabolite-predicted BMI and improvements in metabolic 
health, suggesting proteome stability at the expense of metabolic 
responsiveness to intervention10.

Finally, inter-omic comparisons highlighted the broader integra-
tive capacity of the metabolome: metabolites explained up to 76% of the 
variance of individual proteins (median 35%). In comparison, proteins 
explained up to 74% of individual metabolites with a similar median of 
34% (Extended Data Fig. 2c and Supplementary Table 3). Microbiome 
gene richness was best explained by metabolites, with a median vari-
ance of 61%, compared to 44% for proteins (Extended Data Fig. 2d). 
Similarly, metabolites outperformed proteins in explaining indi-
vidual species abundances, reaching a maximum of 82% variance 
explained for specific MAGs versus a maximum of 51% for proteins 
(Extended Data Fig. 2e). However, the VEmed for MAGs was simi-
lar for both metabolites and proteins (22% and 24%, respectively; 
Extended Data Fig. 2e).

These results underscore strong covariance across omics layers 
and highlight the metabolome’s central role as a clinically relevant 
integrator of host, microbial and dietary signals.

Uncoupling the obesogenic signature from BMI
To improve the parsimony of the model while addressing col-
inearity, we trained a ridge regression model using the 267 
metabolites most stringently associated with BMI (Methods and 
Supplementary Table 4). The resulting metBMI was highly correlated 
with the measured BMI (Fig. 2a; Pearson’s r = 0.62, Spearman’s ρ = 0.63, 
P < 2.2 × 10−16), explaining 39% of BMI variance in the held-out test set 
of the IGT-microbiota cohort (Extended Data Fig. 3a). Similar results 
were obtained using least absolute shrinkage and selection operator 
(LASSO) regression (Methods).

To capture the metabolic signature of obesity across the BMI spec-
trum, we extracted metBMI residuals for each participant, adjusted 
for age, sex and BMI. Individuals with disproportionately high (> +2.5) 
or low (< −2.5) residuals were classified as HmetBMI and LmetBMI, 
respectively, each representing approximately 10% of the cohort. These 
groups exhibited distinct metabolomic profiles (P = 1.2 × 10−7, post 
hoc Wilcoxon rank-sum test; Fig. 2b). LmetBMI individuals clustered 
with those of normal weight, whereas HmetBMI individuals clustered 
with those with obesity, despite similar BMI ranges (range, LmetBMI: 
18.98–46.27 kg m−2, HmetBMI: 20.59–39.92 kg m−2, P = 0.28, Wilcoxon 
rank-sum-test; Extended Data Fig. 3b–d) and similar broad clinical 
characteristics (for example, age, sex, fasting glucose and blood pres-
sure; Fig. 2c).

The gut microbiome is interlinked with host metabolism and 
contributes to approximately 15% of circulating metabolite levels in 
healthy individuals11,12, rising nearly to 30% in prediabetes and T2D13, 
with several microbiota-derived metabolites causally implicated in 
cardiometabolic risk14. Conversely, up to 60% of the variation in gut 
microbiome diversity is explained by the circulating metabolome15, 
underscoring bidirectional host–microbial metabolic interplay. In 
obesity and related metabolic disorders, bacterial diversity is reduced 
and functional capacity altered16–18. Accordingly, the circulating meta
bolome may serve as a proxy for microbiome-derived signals, with 
disrupted interactions contributing to the metabolic heterogeneity 
across the BMI spectrum.

Here we hypothesize that a metabolome-informed BMI predic-
tion provides a more precise and biologically grounded measure of 
adiposity-related risk than traditional BMI. Using machine learning and 
deep phenotyping from two Swedish cohorts (n = 1,408 and n = 466; 
Extended Data Fig. 1), we integrate computed tomography-based 
adipose tissue quantification and metabolomic, proteomic, genomic 
and metagenomic data with comprehensive clinical, lifestyle, dietary 
and physical activity measures. We demonstrate that metBMI cap-
tures metabolic dysfunction across the BMI spectrum, predicts bari-
atric surgery response in an independent cohort (n = 75) and reveals 
potentially causal microbiome–metabolome interactions linked to 
cardiometabolic risk. This integrative framework advances precision 
phenotyping of obesity, illuminates inter-organ and inter-organismal 
disease pathways and may enable earlier, more targeted interventions 
beyond BMI-defined thresholds.

Results
Multi-omics-based modeling of obesity
We first sought to determine which molecular domains—circulating  
metabolome and proteome, gut metagenome and dietary intake—
were most strongly associated with obesity (operationally defined 
as excess weight relative to height, as still widely applied) and adi-
posity (reflecting adipose tissue quantity and distribution) in a 
well-characterized, cross-sectional cohort (Impaired Glucose Tol-
erance and Microbiota Study (IGT-microbiota); n = 1,408; Methods, 
Supplementary Table 1 and Extended Data Fig. 1). This cohort, compris-
ing at-risk individuals without established cardiovascular disease or 
diagnosed T2D, enables the delineation of preclinical obesity-related 
signatures that may generalize to populations with more  
advanced disease.

Using nested ridge regression with 10-fold cross-validation to 
optimize model regularization, we trained predictive models for 
BMI, waist-to-hip ratio (WHR), waist circumference and computed 
tomography-derived visceral and subcutaneous adipose tissue (VAT 
and SAT) areas. Models were constructed using individual omics  
layers—circulating metabolites (n = 1,190); proteins (n = 1,462); micro-
biome features such as gut bacterial species (metagenome-assembled 
genomes (MAGs) (n = 2,820)); gut microbial modules (GMMs) (n = 117); 
Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologues 
(n = 11,411, corresponding to 384 pathways); and dietary variables 
(including dietary indices, macro-nutrient and micro-nutrient intake 
and food groups)—and further integrated into a combined multi-omics 
model (n = 5,420 variables, including metabolome, proteome, meta
genome and diet).

MAGs explained a similar proportion of variance in cen-
tral adiposity traits (44% for waist circumference and approxi-
mately 50% for VAT area, Bonferroni-adjusted P = 1, Wilcoxon 
rank-sum test against metabolite-based estimates; Fig. 1a, 
Supplementary Table 2 and Extended Data Fig. 2a), suggesting shared 
links with visceral fat. However, for BMI, metabolites explained nearly 
twice the variance captured by MAGs (60% versus 30%, respectively; 
Fig. 1a and Extended Data Fig. 2b), indicating that the metabolome 
better represents broader obesity-related processes.
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HmetBMI individuals exhibited hallmarks of metabolic dysfunction, 
including higher WHR, more severe VAT area and attenuation, elevated 
triglycerides, insulin resistance (Homeostatic Model Assessment of 
Insulin Resistance (HOMA-IR)), inflammation (C-reactive protein (CRP)), 
poorer adherence to an anti-inflammatory diet (Anti-Inflammatory Diet 
Index (AIDI))19 and reduced gut microbiome gene richness compared 
to LmetBMI (Fig. 2c and Supplementary Table 5). These patterns were 
consistent across sex and BMI class, highlighting that metBMI captures 
metabolic risk independent of body size (Supplementary Tables 5 and 6).

Some differences between the HmetBMI and LmetBMI, however, 
were sex specific: lower physical activity was more pronounced in males, 
and elevated inflammation and poor adherence to an anti-inflammatory 
diet were more evident in females (Supplementary Table 6), despite bal-
anced model training and the independence of metBMI residuals from BMI 
and sex (Methods). Crucially, key discriminators, such as lower gut micro-
biome gene richness, more pronounced VAT attenuation, insulin resist-
ance and insulin hypersecretion, were consistently observed in HmetBMI 
across both sexes and BMI classes (Supplementary Tables 5 and 6),  
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Fig. 1 | Multi-omics prediction of adiposity. a, Proportion of variance explained 
(hold-out R2) for traits predicted from single omics layers: GMMs, diet, KEGG 
orthologues, MAGs, plasma metabolites and proteins or their combination within 
the IGT-microbiota cohort. Points show the per-fold R2, and bars summarize the 
median across ridge regression cross-validation folds (n = 10). Letters denote 
pairwise differences, with bars sharing a letter not differing significantly (two-
sided Wilcoxon rank-sum test, Benjamini–Hochberg corrected). Exact P values 

are in Supplementary Table 2. b, Two-sided Pearson’s correlations between 
omics-predicted BMI and ground truth adiposity traits. The line represents the 
linear regression fit, and each point represents 1 individual with a total n = 1,408. 
Pearson’s r correlation coefficient and the corresponding nominal P value are 
shown in each panel. Abd VAT, abdominal visceral adipose tissue; Abd VAT att, 
abdominal visceral adipose tissue and attenuation; att, attenuation.
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Fig. 2 | MetBMI corresponds with distinct metabolome entities and clinical 
phenotypes. a, Two-sided Pearson’s correlation between ground truth BMI 
and metBMI (n = 1,408). Each dot represents one individual, colored by metBMI 
group (sample size per group as described in the legend). Pearson’s coefficient 
(r) and the corresponding P value are shown. b, Principal component analysis 
(PCA) of whole plasma metabolome. Each point represents one individual, 
colored by metBMI group. Large points denote group medoids. Side box plots 
display metBMI group distributions along PC1 and PC2 (two-sided Kruskal–
Wallis derived, n = 1,408 and per metBMI group as described in the top legend; 

n for normal weight = 313, overweight = 487, obesity = 307, LmetBMI = 147, 
HmetBMI = 154). Box plots display the median; interquartile range (IQR) with 
whiskers specify ±1.5× IQR; and plotted points denote outliers. c, Comparisons 
of z-score-transformed anthropometric, metabolic and lifestyle features across 
metBMI groups (two-sided Kruskal–Wallis tests with Benjamini–Hochberg 
adjustment). VAT attenuation is shown as absolute values. n per group and box 
plot as in b. oGTT, oral glucose tolerance test; FINDRISC, Finnish Diabetes Risk 
Score; PC, principal component.
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emphasizing the unique contribution of hyperinsulinemia, insulin 
resistance and impaired glucose uptake/utilization in metabolic obe-
sity beyond actual BMI.

These findings were replicated in the independent Swedish  
Cardiopulmonary Bioimage Study (SCAPIS) cohort (n = 466; 
Supplementary Table 7), where metBMI and BMI remained strongly 
correlated (r = 0.72, ρ = 0.71, P < 2.2 × 10−16, out-of-sample R2 = 0.52; 
Extended Data Fig. 4a,b). This cohort had a more balanced sex distri-
bution but was slightly older and showed higher disease burden than 
the IGT-microbiota cohort. Notably, it included a three-fold higher 
prevalence of metabolic syndrome, 11% with newly diagnosed T2D at 
screening and more severe dyslipidemia, despite more intensive treat-
ment with lipid-lowering agents, thus suggesting a further progression 
of metabolic dysfunction (Supplementary Tables 7 and 8). Within 
SCAPIS, HmetBMI individuals had slightly higher ground truth BMI than 
LmetBMI (27.5 kg m−2 versus 26.2 kg m−2) but a markedly higher met-
BMI than the LmetBMI (median 31 kg m−2 versus 23 kg m−2) and a more 
adverse cardiometabolic profile, including elevated triglyceride– 
glucose (TyG) index and fasting glucose and a higher prevalence of 
incident T2D (Extended Data Fig. 4b and Supplementary Table 8).

Clinical risk stratification and intervention response using 
metBMI and its residuals
To evaluate the predictive utility of metBMI, we tested its ability to clas-
sify six cardiometabolic outcomes in the SCAPIS cohort using logistic 
regression adjusted for age and sex (Methods). For each outcome, we 
compared three models: one with BMI, one with metBMI and a nested 
model including both. Likelihood ratio tests (LRTs) assessed whether 
metBMI added explanatory power beyond BMI in the nested model. 
MetBMI yielded the strongest predictive performance for metabolic 
syndrome (MetS), metabolic dysfunction-associated steatotic liver 
disease (MASLD), combined impaired fasting and postprandial glucose 
(Combined Glucose Intolerance and Type 2 Diabetes (CGI-T2D)) and 
screen-detected T2D (Fig. 3a). In metBMI-only models, the predicted 
odds ratios per 1-s.d. metBMI increase were substantial and statisti-
cally significant (MetS: odds ratio = 5.36 (95% confidence interval: 
3.88–7.66, P = 2.6 × 10−22); MASLD: odds ratio = 4.95 (95% confidence 
interval: 3.36–7.65, P = 2.3 × 10−14); CGI-T2D: odds ratio = 2.40 (95% con-
fidence interval: 1.88–3.11, P = 6.9 × 10−12); screen-detected T2D: odds 
ratio = 2.6 (95% confidence interval: 1.83–3.77, P = 2.7 × 10−7)). Nested 
models demonstrated a significantly improved fit compared to BMI 
alone (Fig. 3a), suggesting that metBMI captures additional disease 
signals. However, neither BMI nor metBMI predicted subclinical ath-
erosclerosis (Coronary Artery Calcium (CAC) score and carotid plaque 
presence; P > 0.3 for LRTs).

The associations remained robust after adjusting for traditional 
risk factors (lipids, glucose, blood pressure, WHR and statin use). 
MetBMI remained a strong and independent predictor of MetS (odds 
ratio = 2.12, 95% confidence interval: 1.43–3.24, P = 3.1 × 10−4), MASLD 
(odds ratio = 4.24, 95% confidence interval: 2.69–6.95, P = 2.1 × 10−9) 
and CGI-T2D (odds ratio = 1.76, 95% confidence interval: 1.28–2.43, 
P = 5.0 × 10−4) risk (Extended Data Fig. 5a); continued to add predictive 
value over BMI in nested models for MetS (LRT P = 0.0005) and CGI-T2D 
(LRT P = 1.6 × 10−6); and, unexpectedly, reduced carotid plaque burden 
(LRT P = 0.017) (Extended Data Fig. 5a).

In an independent bariatric surgery cohort20 (n = 75; Methods), 
baseline metBMI residuals were inversely correlated with BMI loss/
reduction at 12 months (r = −0.30, P = 0.008; Fig. 3b), despite no sig-
nificant difference in baseline or follow-up BMI between HmetBMI 
and LmetBMI (Extended Data Fig. 5b). As expected, a higher BMI was 
associated with greater absolute BMI loss (Extended Data Fig. 5c). These 
findings highlight a dissociation between BMI and metBMI: whereas 
higher BMI predicts greater weight loss, higher metBMI residuals 
predict poorer response, suggesting that metBMI captures aspects of 
metabolic resistance to intervention that are not reflected in BMI alone.

Together, these findings establish metBMI and its residuals as 
biomarkers of a metabolically adverse obesogenic signature, captur-
ing risk and intervention response beyond BMI and other traditional 
risk factors.

Characterizing clinical and multi-omics signatures of  
metBMI residuals
Next, we assessed how metBMI residuals relate to metabolic, anthro-
pometric and omics data to identify the biological features behind the 
metabolic obesogenic signature. These residuals, orthogonal to BMI, 
age and sex, correlated more strongly with VAT attenuation, an imaging 
proxy for adipose tissue lipid content and fibrosis21, than with VAT area 
or liver attenuation, both indicators of ectopic fat. Additionally, metBMI 
residuals correlated more strongly than BMI with insulin resistance, 
β-cell-linked insulin hypersecretion (Homeostatic Model Assessment 
of β cell function (HOMA-B), fasting insulin) and impaired glucose 
tolerance (Extended Data Fig. 6a). Mediation analysis revealed that 
metBMI residuals mediated 38% of the effects of VAT attenuation (that 
is, adipose tissue architecture) on β cell function (HOMA-B; bootstrap 
95% confidence interval: 0.28–0.51, P < 2 × 10−16), supporting their role 
in inter-organ metabolic regulation.

In line with these results, metBMI residuals positively associated 
with steroidal metabolites implicated in insulin resistance and cardio-
metabolic disease (for example, metabolomic lactone sulfate22 and 
cortolone glucuronide) as well as with glutamate and inversely with 
glutamine. The balance between these two amino acids, previously 
identified as a marker of adipose tissue dysfunction23, is highly pre-
dicted by the microbiome in our cohort (Supplementary Table 3). Other 
metabolites positively associated with metBMI residuals included 
branched-chain and aromatic amino acids as well as several phos-
phoinositol and phosphatidylethanolamine species. Inverse corre-
lations included phosphatidylcholines, acetyl-carnitines, gut and 
diet-derived carotene diols and cinnamoylglycine11 (Fig. 3c and 
Supplementary Table 9).

MetBMI residuals were also associated with proteome features 
involved in insulin responsiveness and energy regulation across central, 
hepatic and adipose tissues. Positively correlated proteins included 
oxytocin, carboxylesterase 1 (ref. 24), leptin25 and asialoglycoprotein 
receptor 1, the latter reported to impair hepatic cholesterol clearance, 
thereby elevating circulating lipids26. In agreement, metBMI residu-
als were inversely correlated with insulin-like growth factor binding 
protein 2, whose deficiency exacerbates hepatic steatosis and worsens 
MASLD phenotypes27.

To assess heritability, we tested polygenic risk scores (PRSs) 
related to insulin secretion, adipose tissue distribution, circulating 
lipids and ectopic fat accumulation28–30: although each PRS correlated 
with its respective trait, neither metBMI nor its residuals was signifi-
cantly captured by any PRS (Extended Data Fig. 6b).

These findings indicate that metBMI residuals reflect a non- 
genetic, acquired metabolic signature characterized by ectopic fat 
accumulation, hepatic and adipose tissue dysfunction and altered insu-
lin signaling across omics. This aligns with the Twin Cycle Hypothesis31, 
whereby, depending on a personal fat threshold, liver and pancreatic 
interactions contribute to the individual pathogenesis of insulin resist-
ance and metabolic disease, independent of BMI-defined obesity and 
across the entire BMI range.

Microbiome features of the obesogenic signature
Given the links between host metabolism and the gut microbiome15,17, 
we examined how metBMI and its residuals relate to gut microbiome 
diversity, ecological structure, composition and function. MetBMI 
and its residuals were more strongly and negatively correlated with 
gene richness than BMI (ρ = −0.19, −0.24 and −0.3 for BMI, metBMI 
residuals and metBMI, respectively; P < 2.2 × 10−16 for all correlations 
and false discovery rate (FDR) < 0.05, adjusted for age and sex as well 
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as BMI where appropriate; Extended Data Fig. 7). In multivariable mod-
els, the addition of metBMI eliminated the significant correlation of 
gene richness and 359 metabolic, dietary and inflammatory markers, 
including BMI, HOMA-IR, MetS, WHR, CRP, renal function, leptin and 

dietary variables (Supplementary Table 10), highlighting metBMI as 
a concise summary of inter-organ and inter-organismal interactions. 
Notably, the gene richness of individuals with normal weight but high 
residuals (HmetBMI) was as low as that of individuals with obesity in 
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Fig. 3 | MetBMI and its residuals are associated with higher disease odds, 
reduced benefit from intervention and consistent molecular phenotypes. 
a, Forest plot for six cross-sectional outcomes in the SCAPIS cohort (CAC 
score, carotid plaque, MetS, MASLD, CGI-T2D and screen-detected T2D). Data 
are presented as odds ratio estimated (center points) with 95% confidence 
intervals (horizontal bars), with lower and higher confidence interval limits from 
multivariable logistic regression per 1-s.d. increase in the predictor (BMI, metBMI 
or both in the nested model). The dashed line marks odds ratio = 1. P values 
are derived from two-sided Wald tests for BMI/metBMI. For the nested model, 
P is derived from an LRT versus BMI-only model. Sample sizes per outcome: 
CAC score (n = 212), carotid plaque (n = 268), MetS (n = 163), MASLD (n = 78), 

CGI-T2D (n = 136) and T2D (n = 52). b, Two-sided Spearman’s correlation for 
metBMI residuals with BMI loss 12 months after bariatric surgery (n = 75), with 
its corresponding P value. Each dot represents one individual, and the dashed 
line represents the linear regression. c, Two-sided partial Spearman’s correlation 
between metBMI residuals and all available circulating metabolites, proteins and 
clinical chemistry, corrected for age, sex and BMI in the IGT-microbiota cohort 
(n = 1,408). Positive correlations are in pink; negative correlations are in blue. 
Metabolites with variance explained >20% (ref. 32) or predominantly predicted by 
the microbiome11 are highlighted in green. Only Benjamini–Hochberg-adjusted 
significant correlations are shown (q < 0.05). ApoA1, apolipoprotein A1; TG, 
triglycerides.
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the LmetBMI group (P = 0.06; Fig. 4a,b), indicating that erosion of 
microbiome diversity accelerates with metabolically adverse adiposity.

Beyond gene richness, HmetBMI and LmetBMI groups exhibited 
distinct microbiome community structures. Principal coordinate 
analysis (PCoA) revealed clear compositional separation and clustering 
of HmetBMI with obesity and LmetBMI with normal weight (Fig. 4c), 
consistent with the observed metabolome patterns (Fig. 2b). These dif-
ferences extended to ecological order, as indicated by network analy-
ses. We observed low similarity between the two clusterings and denser, 
more modular consortia in LmetBMI, with a greater degree of eigenvec-
tor centrality (P = 0.000009 and P = 0.0000081, respectively, adjusted 
Rand index = 0.0001), indicating a larger number of interactions 
between nodes, anchored by Christensenellales (for example, Phil1 
sp001940855) and Methanobrevibacter smithii (Extended Data Fig. 8a 
and Supplementary Table 11). HmetBMI networks were sparser and 
centered around taxa linked to metabolic dysfunction (for example, 
Blautia, Bacteroides, Flavonifractor, Erysipeloclostridium ramosum and 
Ruminococcus gnavus), which exhibited more negative interactions 
with health-related taxa, such as Faecalibacterium and Eubacterium 
(Extended Data Fig. 8b and Supplementary Table 11).

Species-level modeling, adjusted for medication and mutually 
controlling for BMI, VAT area and attenuation, identified 774 taxa 
associated with metBMI residuals (Supplementary Table 12 and 
Extended Data Fig. 9a,b). Of the 104 species shared with other adipos-
ity metrics, 100 were primarily driven by metBMI residuals (Fig. 4d), 
with R. gnavus being the only species enriched across all traits and cor-
related with impaired glucose tolerance and the TyG index (Fig. 4d and 
Extended Data Fig. 9c). To exclude that changes in microbiome com-
position at the species level were secondary to decreasing microbiome 
richness, we adjusted for the latter. We observed that 45 taxa remained 
significantly associated with metBMI residuals, most notably Fae-
calibacterium prausnitzii and Oscillospiraceae (decreased) and oral/
aerotolerant species (Streptococcus anginosus, Streptococcus mitis, 
Gemella and Granulicatella), which increased with metBMI residuals 
(Extended Data Fig. 9d). These species associated with low-grade 
inflammation and shifts in fatty acid, bile acid and environmental expo-
sures, such as the plasticizer methyladipate (Supplementary Table 13). 
Although oral taxa tracked with proton pump inhibitor (PPI) levels, 
their enrichment with increasing residuals was independent of medi-
cation, suggesting parallel ecological changes created by drugs18 and 
metabolic injury.

Functionally, 57 GMMs associated with metBMI residuals inde-
pendently of BMI or other adiposity traits (Supplementary Table 14). 
Residuals were marked by reduced butyrate production, mannose/
glycerol utilization and increased trimethylamine production from 
γ-butyrobetaine and methanogenesis from trimethylamine. Even after 
adjusting for gene richness, two hydrogenotrophic processes remained 
significant along metBMI residuals—decreased methanogenesis from 
carbon dioxide and increased homoacetogenesis—indicating a shift 
in microbial carbon dioxide and hydrogen utilization, converted to 
acetate in HmetBMI or dissipated to methane in LmetBMI.

Together, these data suggest that metBMI residuals reflect a 
microbiome signature characterized by reduced diversity, altered 
network structure and functional shifts toward pro-inflammatory and 
atherogenesis-associated metabolism, capturing aspects of metabolic 
disruption not explained by BMI alone.

Metabolite-mediated microbiome–phenotype interactions
Gut bacteria substantially influence the circulating metabolome11, 
as also seen in our study (26% of inter-individual metabolite vari-
ance explained by MAGs in median; Supplementary Table 3 and 
Extended Data Fig. 2c) and in SCAPIS (27% variance explained)32. Given 
the strong covariance in metabolome and microbiome compositions, 
we postulated that metabolites driving the underlying metBMI sig-
nature might be closely related to the microbiome. We generated a 

clinically tractable signature by applying recursive feature elimina-
tion (RFE) and LASSO across 10 resamples, retaining 66 metabolites 
that best captured metBMI residuals (Supplementary Table 15). This 
reduced panel explained 38.6% of BMI variance, similar to the per-
formance of the full 267-metabolite model (40%) and markedly more 
than a model comprising age, sex, triglycerides, high-density lipo-
protein (HDL), low-density lipoprotein (LDL), total cholesterol and 
insulin (26%).

For 61 of 66 metabolites, microbial species accounted for 
more variance than diet or host genetics (FDR < 0.05; Fig. 5a,b and 
Supplementary Table 15). Of these, metabolites enriched with met-
BMI residuals included multiple sphingomyelins, ceramides and the 
microbial fatty acid derivative cis-3,4-methyleneheptanoylcarnitine, 
previously linked to insulin resistance and T2D33. Conversely, lower 
metBMI residuals were associated with 3β-hydroxy-5-cholestenoate, 
N-acetylglycine, indolepropionate and carotene diols, the latter two 
being diet-dependent bacterial metabolites with protective effects 
against cardiovascular risk and T2D34,35 (Fig. 5b, Extended Data Fig. 10a 
and Supplementary Table 15). Building on the correlations between 
bacterial species specific to metBMI residuals and the selected metabo-
lites (absolute ρ > 0.1, FDR < 0.05; Extended Data Fig. 10b), we explored 
how bacteria may influence host phenotypes by conducting bidirec-
tional mediation analyses among microbiome species, metabolites 
and clinical traits.

Among the 116 microbiome-to-phenotype pathways mediated 
by metabolites, bacteria from the Oscillospiraceae family (for exam-
ple, uncharacterized taxa in NK3B98, UMGS902 and UMGS1865) and 
Christensenellales exerted protective effects via anti-inflammatory 
and lipid-based metabolites. For example, 1-(1-enyl-palmitoyl)-2- 
linoleoyl-GPC (P-16:0/18:2)36 mediated the impact of Oscillospiraceae 
on VAT attenuation, improved circulating lipid profiles and lower met-
BMI. Similarly, cinnamoglycine, a metabolite associated with microbial 
diversity15, carotene diols and palmitoyl sphingomyelin (d18:1/16:0), 
connected several Clostridia species, Christensenellales and the lysine 
degradation pathway of the microbiome, involved in butyrate produc-
tion, with reduced WHR, improved insulin sensitivity and lower liver 
fat (Fig. 5c and Supplementary Tables 16–18). By contrast, bacterial 
species linked to higher adiposity markers and metBMI residuals, such 
as R. gnavus and aerotolerant/oral bacteria, exerted effects through 
depletion of these protective metabolites, reported reduced with 
escalating cardiometabolic and vascular disease17 (Fig. 5c).

Notably, 186 reverse linkages (phenotype-to-microbiome) were 
identified, implicating systemic inflammation (for example, CRP), 
dietary vitamin B6 and lipid traits in shaping microbial functions. 
These effects were direct (147 linkages), mediated by metabolites 
(seven linkages) or a combination of both (32 linkages) and were asso-
ciated with functional shifts, including increased triacylglycerol and 
glutamine degradation and reduced dissimilatory nitrate reduction 
(Supplementary Table 18).

These findings demonstrate that metBMI residuals capture a 
bidirectional host–microbiome axis, suggesting that circulating 
metabolites may not only serve as functional proxies for microbiome  
composition but also mediate the effects of bacterial species on meta-
bolic risk phenotypes. Disruptions in these microbiome–metabolome 
interactions may contribute to the metabolic dysfunction observed 
in subclinical adiposity-driven changes along the BMI spectrum, 
independent of obesity-defining thresholds (Fig. 6). This putative 
mechanistic link also explains the superior risk stratification of met-
BMI over BMI.

Discussion
In this study, we demonstrate that metBMI and its residuals capture 
the metabolic signature of obesity across the BMI spectrum. MetBMI 
outperforms other omics-derived BMI models in aligning with con-
temporary definitions of obesity2, emphasizing central adiposity over 
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conventional BMI thresholds. MetBMI residuals provide a refined meas-
ure of metabolic burden, independent of measured BMI, yet strongly 
linked to visceral fat distribution, insulin resistance and hypersecretion, 
impaired glucose tolerance and increased cardiometabolic risk for T2D 
and fatty liver disease, consistent with the Twin Cycle Hypothesis31 and 

recent reports linking metabolically predicted BMI to elevated T2D 
morbidity and mortality9.

Our metBMI also compares favorably with previous efforts. Cirulli 
et al.8 used 650 metabolites to explain approximately 50% of BMI vari-
ance, retaining 43% explanatory power with 49 metabolites without 
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Fig. 4 | MetBMI groups correspond to distinct gut microbiome states and have 
shared species with other obesity measures. a,b, Microbial gene richness for 
individuals with lower and higher predicted metBMI within BMI classes (a) and 
metBMI groups across BMI classes (b), assessed using two-sided Wilcoxon rank-
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n = 46, HmetBMI n = 41. c, PCoA of gut microbial communities (Aitchison 
distance) in the IGT cohort (n = 1,408), colored by metBMI group: green, normal 
weight (n = 313); taupe, overweight (n = 487); purple, obesity (n = 307); light 
green, LmetBMI (n = 147); light purple, HmetBMI (n = 154). Large dots indicate 
group medoids. Variance explained by metBMI group and P values from  

one-sided PERMANOVA are shown. Side box plots depict group distributions 
across the first and second principal coordinates (two-sided Kruskal–Wallis 
test). In a–c, box plots show median (center line), IQR (box), whiskers to the most 
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abundant bacterial species overlapping in all obesity measures. Left: feature 
contributions to effect size (darker = increase). Right: associations with 
obesity measures, adjusted for other measures; signed effect size indicated by 
marker color (green, increased; violet, decreased). Asterisks mark features not 
confounded by other measures; circles indicate confounded features. **q < 0.01; 
***q < 0.001. Full data are in Supplementary Table 12. W., with.
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external validation. Gerl et al.37 reported 47% variance explained using 
75 lipidomic features (with age and sex included), whereas Beyene 
et al.38 achieved 52% in external validation using 575 lipid species. 
Watanabe et al.10 reported R2 of 0.7 internally but only 0.3 in external 
validation. Although their metabolite-based BMI decreased after inter-
vention (as opposed to protein-predicted BMI), its predictive value 
for outcomes was not assessed. In this context, our 66-metabolite 
signature retains 38.6% of the 40% explanatory power observed for 
the full 267-metabolite model, and residuals were linked to poorer 
post-surgical weight loss, underscoring the model’s clinical utility. Dis-
criminative metabolites in our model, including branched-chain amino 
acids, long-chain fatty acids and phospholipids, have been associated 
with higher BMI predictions in large cohorts8–10, and several have been 

mechanistically linked to insulin resistance and T2D39, underscoring 
robustness in our findings.

Detailed phenotyping in the IGT-microbiota cohort identified VAT 
as a key driver of metBMI. Notably, metBMI residuals correlated with 
VAT area and even more strongly with VAT attenuation, a computed 
tomography-derived proxy for adipocyte hypertrophy, mirroring find-
ings that multi-omics-derived BMI is influenced by adipokines such as 
leptin10, a hormone associated with adipocyte size25, VAT attenuation 
and increased cardiovascular risk21.

A still-underexplored dimension of obesity’s metabolic hetero-
geneity is its relationship with the gut microbiome and its extensive 
metabolic capacity14. MetBMI was robustly captured by microbiome 
composition, and several signature metabolites were microbially 
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produced or highly predictable from microbial features. For instance, 
cinnamoylglycine mediated potentially causal microbiome links to 
reduced WHR, improved insulin sensitivity and lower liver fat. Elevated 
metBMI was associated with microbial networks of reduced connecti
vity and modularity, suggesting a greater susceptibility to environmen-
tal influences, alongside decreased fermentative activity, increased 
potential for anaerobic respiration (for example, nitrate reduction) 
and altered methanogenesis patterns. These shifts have been linked to 
gut inflammation and ectopic oral bacterial colonization40. Reduced 
methanogenesis from carbon dioxide, on the other hand, with com-
pensatory trimethylamine and increased trimethylamine production 
potential may promote trimethylamine N-oxide generation by the 
host and heighten cardiovascular risk14. Concomitantly, the increased 
potential for homoacetogenesis (that is, reductive acetogenesis from 
carbon dioxide and hydrogen scavenging under conditions of impaired 
methanogenesis) may elevate acetate availability, promoting hepatic 
lipogenesis41. These findings align with previous studies associat-
ing enhanced methanogenic potential with leanness and improved 
metabolic health16,42.

In the altered gut microbial ecology associated with HmetBMI,  
R. gnavus abundance was increased despite a stable prevalence across 
individuals, tracking closely with VAT area, consistent with previous 
studies43, and associating with insulin resistance and cardiovascular 
risk, independent of gene richness. This may implicate R. gnavus in 
metabolic dysfunction via tryptophan44 and bile acid45 metabolism. 
By contrast, higher richness attenuated R. gnavus’s pro-inflammatory 
links, suggesting that its role as a mucin glycan forager may be 
more pronounced in low-diversity gut environments, highlighting 
context-dependent and strain-dependent effects that reflect substan-
tial intra-species genomic heterogeneity45.

We also confirmed that Christensenellaceae are enriched and 
co-occur with methanogens, and we demonstrated that this microbial 
constellation was enriched in LmetBMI and more strongly associated 
with metabolic health than with body mass per se46, likely through 
lipid-mediated effects. Similarly, several uncharacterized members of 
the Oscillospiraceae family were associated with favorable metabolic 
profiles and reduced inflammation. These associations appear to be 
mediated via metabolites such as N-acetylglycine, which is linked to 
improved adipose tissue immune tone in vivo47, and microbial lipids 
involved in intestinal cholesterol metabolism48.

Disentangling the effects of quantifiable obesity metrics and 
adjusting for bacterial gene richness revealed that metBMI residuals 
were primarily associated with aerotolerant, facultative anaerobic 
and species of oral origin—for example, Streptococcus anginosus—
uniquely linked to systemic inflammation in our cohort and to sub-
clinical atherosclerosis in SCAPIS49. Although these microbial features 
were also correlated with circulating levels of PPIs, their association 
with metBMI residuals persisted after adjusting for PPI use, suggesting 
that the frequently reported enrichment of oral taxa in the gut, often 
interpreted as a marker of preclinical disease49, is not solely driven 
by medication exposure but reflects depletion of endogenous gut 
commensals50. Notably, the enrichment of these species across the 
full spectrum of gene richness highlights that alterations in micro-
bial network structure and function may be more informative than 
diversity metrics alone.

Taken together, our findings suggest that the gut microbiome 
both reflects and potentially contributes to the metabolic derange-
ments of obesity, particularly via circulating metabolites. The met-
BMI signature captured a constellation of clinically relevant features, 
including central adiposity, insulin resistance and hypersecretion, 
kidney dysfunction, dietary composition and physical activity—traits 
not fully captured by anthropometry or standard risk assessment 
tools. Lack of association between PRSs and metBMI underscores 
environmental and lifestyle influences over genetic predisposition in 
shaping metabolic obesity.

Limitations of our study include its applicability to predominantly 
European white populations, reliance on semiquantitative metabolite 
data, which limits our ability to define universal ranges for the retained 
metabolites, and the potential exclusion of biologically relevant but 
non-significant findings. Although we performed mediation analyses, 
these do not prove biological causation. Finally, we rely on surrogate 
markers of insulin secretion and resistance and recognize that incor-
porating gold standard techniques, such as clamping for dynamic 
measurements, might provide more insights into metabolic obesity.

In summary, a defined, microbiome-linked metabolite panel cap-
tures the metabolic injury associated with obesity, stratifies clinical 
risk and predicts surgical outcomes more effectively than BMI. This 
signature proves robust and replicable across omics layers and cohorts, 
reflecting bidirectional interplay between host metabolism and the 
gut microbiome. Recent metabolome studies underscore the value 
of integrated multi-omics approaches in predicting obesity-related 
disease risk8,9, and our findings support the notion that metBMI is a 
more sensitive indicator of individual disease burden, particularly 
among individuals who fall below conventional screening thresholds.

From a translational perspective, using large-scale metabolite 
panels to derive obesogenic signatures is impractical in clinical set-
tings. Our results suggest that the metBMI signature is tightly linked to 
insulin resistance and hypersecretion and shaped by VAT distribution 
and cellular characteristics. As definitions of obesity evolve, especially 
in light of the recent consensus to include measures of adiposity in 
diagnostic criteria2, multi-omics tools such as metBMI can provide 
surrogate markers and mechanistic insights into underdefined disease 
pathways. Among promising clinically relevant markers are dynamic 
insulin resistance and secretion indices, which are poorly captured 
by genetics alone due to their complex regulation but are essential 
for precision prevention and therapy. Our results lay the groundwork 
for experimental validation and future clinical application of this 
biological framework.
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Methods
Description of study cohorts
IGT-microbiota cohort. We used participants from the Impaired Glu-
cose Tolerance and Microbiota Study (IGT-microbiota), a prospective, 
non-interventional community-based cohort that ran between 2014 
and 2018. Of 26,009 invited adults (50–65 years) without known T2D 
from the greater Gothenburg area, 5,152 underwent oral glucose tol-
erance test (oGTT), and 1,868 provided stool samples. Standardized 
phenotyping included anthropometrics; computed tomography-based 
body composition; venous blood for metabolomics, proteomics and 
clinical chemistry; health, lifestyle and dietary questionnaires; as well 
as fecal sampling, as previously described16,51.

Dietary intake was assessed with the MiniMealQ52 food frequency 
questionnaire (2-month reference period) to derive micronutrients/
macronutrients, food items and anti-inflammatory/pro-inflammatory 
diet indices (AIDI and Pro-Inflammatory Diet Index (PIDI), respec-
tively)53. Additional diet-related factors, including major food items 
and physical activity variables (total volume and total intensity)54, were 
derived from principal component analysis (PCA). Physical activity was 
measured using a hip-worn accelerometer (ActiGraph models GT3X+, 
wGT3X+ and wGT3X-BT) over 10 days and categorized as sedentary 
(sed), light (lpa), moderate (mpa), moderate-to-vigorous (mvpa) and 
vigorous (vpa)55, and the average time per day in that state was calcu-
lated after processing in ActiLife software.

Body composition (subcutaneous, (intra)abdominal, intermuscu-
lar and intrahepatic fat depots) was quantified from dual-source com-
puted tomography (Siemens Medical Solutions, Somatom Definition 
Flash; dual-energy for the liver) as previously described51.

We included participants with complete clinical, metabolome and 
microbiome data and without known or presumed cardiovascular dis-
ease (according to history, medication or electrocardiogram), resulting 
in a total of 1,408 individuals (794 females and 614 males; 50–65 years 
of age; BMI 18.3–46.3 kg m−2, mean = 27.1 kg m−2; Extended Data Fig. 1). 
Multi-omics encompassed clinical laboratory tests, 1,190 metabolites, 
1,462 proteins, whole fecal metagenome sequencing (over 15 million 
bacterial genes) and genotyping for PRSs related to body composition, 
BMI and lipid metabolism. Cardiovascular risk was estimated using 
the Framingham risk score56, insulin resistance by the TyG index57 and 
HOMA-IR58 and β cell function by HOMA-B59.

SCAPIS cohort. The validation cohort was derived from SCAPIS51, a 
prospective population-based cohort of 30,154 adults aged 50–65 years 
living in six municipalities between 2014 and 2018. Visits included 
anthropometrics, dietary questionnaires, blood draw, blood pressure 
measurement, fecal sampling and health/lifestyle questionnaires 
aligned with IGT standard operating procedures.

For validation, we analyzed data from 466 individuals with avail-
able BMI and complete metabolomics used in the metBMI model 
(Supplementary Table 7).

Both studies adhered to the Declaration of Helsinki with approvals 
from the Swedish Ethics Review Authority/regional ethics review board 
in Gothenburg (IGT: Swedish institutional review board study number 
Dnr 560-13; SCAPIS: Etikprövningsmyndigheten Dnr 2010-228-31M and 
Dnr 2018-315). All participants provided written informed consent, and 
no compensation was provided.

Bariatric surgery cohort. From a published cohort20, 189 individuals 
underwent metabolic surgery. Baseline data were collected 2 months 
prior to surgery. Exclusions were inflammatory disorders, chronic 
kidney disease, coronary artery disease, pregnancy or breastfeeding. 
A subset of 75 participants had metabolon profiling available, enabling 
pre-surgery metabolome-based predictions associated with 12-month 
outcomes. Study protocols were approved by the University of Leipzig 
ethics committee (applications 017-12-23012012 and 047-13-28012013), 
with all participants providing written informed consent.

Data generation and preprocessing
Plasma metabolome. Plasma samples were randomized and pro-
filed by Metabolon (high-performance liquid chromatography–mass 
spectrometry (HPLC–MS)). Processing and quality control followed 
established procedures with peaks identified/quantified using internal 
standards and software, as previously described32. Samples were run in 
144-sample batches, and peak areas were divided by the batch’s median 
peak area. Metabolites were annotated against Metabolon’s library. 
Consistently detected but not annotated metabolites are denoted 
by ‘X’ followed by a unique identifier. After log transformation, batch 
normalization and block correction, 1,190 metabolites were retained 
for analysis (two metabolites missing in the entire IGT cohort, and 
156 missing for 61% of the cohort). In SCAPIS, only metabolites from 
the main model for metBMI prediction were included, and none was  
missing in the validation sample.

Plasma proteome. Proteins were quantified with Olink PEA (1,462 
proteins in four separate 384-plex panels related to inflammation, 
cardiometabolic disease and neurological and oncological disorders 
as described elsewhere)60. Samples were randomized. Buffer-only 
negatives were used to determine background and detection limits. 
Normalized protein expression (NPX, log2) was generated after qual-
ity control and normalization to standards and inter-plate plasma 
sample controls.

Genomics. Whole blood DNA was genotyped on an Illumina GSA-MDv3 
array. Genotype clusters from the first batch were applied across batches 
for consistency (GenomeStudio 2.0.3). Quality control included checks 
for sex discordance, missing data, heterozygosity and batch effects. Call 
rate filters were ≥90% (markers/individuals), followed by a more strin-
gent 98% call rate requirement. Hardy–Weinberg equilibrium test was 
performed on samples of Swedish origin at 1 × 10−8, and a minor allele 
frequency (MAF) cutoff of >0.1% was implemented. Pre-imputation 
harmonization was conducted using Will Rayner’s preparation script 
(HRC-1000Gcheck-bim-v4.3.0, https://www.chg.ox.ac.uk/~wrayner/
tools/) to align strand/alleles/positions as well as frequency differences. 
Palindromic single-nucleotide polymorphisms (SNPs) with MAF > 0.4 
were removed to mitigate the risk of allele switching, and SNPs with 
allele mismatches or >0.2 frequency difference between the data and 
the reference panel were removed. Imputation to HRC r1.1 reference 
panel (Sanger imputation service; EAGLE2 + PBWT) retained variants 
with ≥0.7 and MAF ≥ 0.01. PRSs were built using publicly available 
genome-wide association study (GWAS) summary statistics on the  
phenotypes of interest29,30.

Fecal microbiome. Participants collected chemically preserved stool 
samples at home using pre-packed collection kits. Samples were kept 
at room temperature for ≤36 hours and then stored at −80 °C at the 
research facility. DNA extraction and quality control followed pre-
viously described established protocols16. Library preparation and 
sequencing were performed using Illumina chemistry on HiSeq 4000 
instrumentation (150-bp paired-end reads; GATC Biotech)16.

Reads with a Phred score less than 20 and human-mapped reads 
(GRCh37) were removed, yielding, on average, 26.5 million high-quality 
paired-end reads (range, 5.3–69 million per sample). A 15,186,403 
non-redundant microbial gene catalog was assembled as previously 
described16, to which, in mean, 75.1% of reads could be mapped back 
(MEDUSA pipeline61). Gene abundance profiles across samples were 
rarefied to 22 million reads per sample, and mean gene abundances 
were obtained over 50 repeated rarefactions. Gene richness equaled the 
number of genes detected in the rarefied set. Taxonomic profiles were 
generated by mapping against the Unified Human Gastrointestinal 
Genome (UHGG) version 2.0 (ref. 62) catalog with Kraken263 version 
2.1.2 at the species level, and abundance profiles were estimated using 
Bracken64 2.6.2.
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BLASTX65 was used to derive functional annotations of the newly 
assembled genes against the KEGG database66, and the previously 
described customized GMM set was expanded by six trimethylamine  
(TMA) and 20 phenylpropanoid metabolism modules17,67. Omixer- 
RPM68 version 1.1 was used for GMM abundance computation with 
module presence requiring ≥60%, as detailed elsewhere17.

Statistical analyses
Analyses of variance explained. Variances explained for each covari-
ate were estimated using both ridge and LASSO regression with nested 
10-fold cross-validation (glmnet version 4.1.6). The final results are 
based solely on ridge regression, as both methods yielded similar 
performance. Still, BMI prediction with ridge regression yielded a 
slightly improved prediction (Methods: ‘Ridge and LASSO regression 
on BMI’). Ridge regression models were conducted in the 1,408 study 
participants, excluding those with missing data, using microbial spe-
cies abundances (MAGs, center log ratio (CLR) transformed), scaled 
GMMs, KEGG modules, metabolomics, proteomeomics, diet and 
metadata. Feature spaces focused on BMI and adiposity measures 
(waist circumference, WHR, areas and attenuations for abdominal 
VAT attenuation and SAT), microbiome richness and other omics 
space variables.

In each nested iteration, nine folds were used to train a ridge 
model with an inner 10-fold grid search to identify the optimal lambda 
value. The test fold (held-out fold) was then used to calculate the 
out-of-bag prediction, R2 and the test error. When predicting a vari-
able, the entire feature space containing that variable was excluded 
(for example, no metabolome data were used to predict single 
circulating metabolites).

Ridge and LASSO regression on BMI. BMI was modeled with ridge 
and LASSO regression. Only metabolites significantly associated with 
BMI (Spearman’s ρ > 0.1) were included in the model. To balance the 
sex and BMI groups, equal numbers were sampled from the World 
Health Organization (WHO) BMI categories (BMI 18.5–24.9 kg m−2, 
25–29.9 kg m−2 and ≥30 kg m−2), limited by the smallest stratum (129 
men with a BMI of 18.5–24.9 kg m−2), yielding 774 individuals. These 
were split randomly into a 75% training set and a 25% test set. Remain-
ing participants not within the BMI bins were allocated to the ‘non-test’ 
set, which, together with the test set, constituted the ‘extended test 
set’. After λ-parameter optimization, ridge regression was performed 
using cv.glmnet with 10-fold cross-validation to minimize the mean 
squared error (glmnet version 4.1.6, length λ = 100, range 10−3 to 10−5). 
Hold-out R2 on the BMI-binned test set quantified performance. Ridge 
and LASSO achieved R2 = 0.39 and R2 = 0.35, respectively. The final 
ridge model was used to predict BMI (henceforth, metBMI) in the 
entire cohort. Residuals from a model adjusting for age, sex and BMI 
were extracted for further downstream analyses. Participants with 
residuals < −2.5 were classified as having a predicted metabolic BMI 
lower (LmetBMI, n = 147), and participants with residuals > 2.5 were 
classified as having a higher predicted than their ground truth BMI 
(HmetBMI, n = 154). Others were classified according to their WHO 
BMI categories: normal weight (n = 313), overweight (n = 488) or with 
obesity (n = 307). Residual distributions were similar across training 
and test sets and BMI categories. MetBMI was modestly lower at very 
high BMI (Extended Data Fig. 3d).

Logistic regression for disease prevalence. Associations between 
binary cardiometabolic outcomes and BMI or metBMI were assessed 
using logistic regression, adjusted for age and sex (binomial glm, stats 
version 4.1.1). For each outcome, three models were constructed: one 
that included BMI, one that included metBMI and a nested model that 
included both. Independence from conventional risk factors was tested 
in a second set, adjusting for WHR, HDL, LDL, triglycerides, systolic 
and diastolic blood pressure, glucose and statin use. The added value 

of metBMI beyond BMI was tested using LRTs (ANOVA function) that 
compared nested models with BMI-only models.

PCA on metabolite levels. PCA on the complete metabolomics data 
was performed using prcomp and visualized using fviz_eig (factoextra 
version 1.0.1 (ref. 69)). Resulting Euclidean distances were extracted 
and plotted using ggplot2 version 3.4.0 (ref. 70).

Correlations and regression. Partial Spearmanʼs correlations for gene 
richness and metabolic BMI residuals were used to derive estimates 
adjusted for age, sex and BMI and multiple testing (ppcor version 1.1, 
p.adjust in stats version 4.1.1 at 5% FDR). The categorical sex variable 
was converted into a dummy variable prior to analysis. Linear regres-
sion models of gene richness included diabetes status, MetS presence71 
and BMI as independent variables in one model. MetBMI was added in 
a second model. P values were obtained using the F-test, and P < 0.05 
was considered significant. Similarly, individual linear regressions of 
gene richness against available variables were performed iteratively, 
correcting for BMI, age and sex or metBMI, age and sex. Variables with 
near-zero variance (estimated using caret version 6.0.93 (ref. 72))—for 
example, N-acetyl sulfapyridine, rocuronium, rivaroxaban, cefazolin 
and X-21628—were excluded from the model. Normality was assessed 
with the Andersen–Darling test (nortest version 1.0.4 (ref. 73)), and 
non-normally distributed variables were log transformed.

RFE and bidirectional mediation analysis. To refine the variables for 
subsequent downstream analyses, including bidirectional mediation, 
we implemented RFE on the metabolome and metadata datasets. These 
datasets comprised variables related to diet, physical activity, clini-
cal chemistry and anthropometry, including body composition. We 
applied Boruta (version 8.0.0 (ref. 74), 999 importance source runs). 
This process narrowed down the most pertinent metabolites to 66, 
with 10 consistently selected in iterative LASSO models across all tested 
models, 51 identified in the ridge regression model and five additional 
metabolites (Supplementary Table 15). Similarly, the clinical features 
tested from the metadata were reduced to 63 variables.

For mediation, we first computed Spearmanʼs correlations among 
(1) microbiome species overlapping across obesity traits and associated 
with metBMI residuals after adjusting for other obesity measures and 
richness (68 species) and (2) 57 GMMs associated with metBMI residu-
als. We then correlated these with (3) the 66 metabolites and (4) the 63 
metadata variables identified through RFE. We retained only those vari-
ables from the three feature sets that exhibited significant correlations 
with variables from the other sets, adhering to a minimum absolute 
Spearmanʼs correlation threshold of 0.1 and a maximum adjusted P 
value threshold of 0.05, following the Benjamini–Hochberg correction.

As a result, 66 bacterial species, 51 GMMs, 56 metabolites and all 
63 metadata variables were kept for further mediation analysis. Using 
these variables, three grids containing all possible variable combi-
nations were constructed. The combinations were arranged in the 
following sequence: microbiome feature → metabolite → phenotype 
variable; microbiome feature → phenotype variable → metabolite; 
and phenotype variable → metabolite → microbiome feature. These 
sequences were used to test for direct and reverse mediation effects 
for microbiome features via metabolites and phenotypes, respectively, 
and to assess reverse causation in the third configuration.

The mediation analysis was conducted separately for each grid 
by fitting the model y = x + m, where ‘y’ is the outcome variable (phe-
notype in direct mediation and metabolite in reverse mediation), ‘m’ 
is the mediator (metabolite in direct mediation and phenotype in 
reverse mediation) and ‘x’ is the exposure variable (microbiome feature 
in both direct and reverse mediations). In the third mediation grid,  
‘y’ represents the microbiome feature, and ‘x’ represents the phenotype 
variable. Unstandardized indirect effects were computed (mediation 
version 4.5.0 (ref. 75), 1,000 bootstrap). The average causal mediation 
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effect (ACME), reflecting the isolated effect of the mediator, was deter-
mined for each direction, and its P values were adjusted for multiple 
comparisons using the Benjamini–Hochberg method.

Microbiome–phenotype linkages via metabolites were identi-
fied after excluding linkages with reverse mediation and direct 
phenotype–bacteria effect by FDR-ACME < 0.05, bacteria → pheno
type → metabolite (P value-ACME.inverse > 0.05), phenotype →  
metabolite → bacteria (P value-ACME.inverse2 > 0.05) as well as 
phenotype → bacteria (P value-average direct effect (ADE) > 0.05). 
Microbiome–metabolome linkages via phenotypes were estab-
lished based on FDR-ACME.reverse1 < 0.05, P value-ACME > 0.05,  
P value-ACME.reverse2 > 0.05 and P value-ADE.reverse2 > 0.05. Pheno-
type–bacteria linkages, either direct or via metabolites, were identified 
with P value-ACME and P value-ACME.reverse1 > 0.05 and FDR-ACME.
reverse2 and/or FDR-ADE.reverse2 < 0.05 for mediated effect or com-
bined mediated and direct effects, respectively.

Microbiome analyses
Species-level data were filtered at 5% prevalence filter and combined 
into a phyloseq object (phyloseq version 1.42.0 (ref. 76), 2,820 unique 
taxa/MAGs from 1,408 samples, 22 phyla and 790 genera, non-filtered: 
3,331). PCA was performed using metric multidimensional scaling 
(MDS) and Aitchison distances on CLR-transformed taxa counts, con-
structed with the vegdist function from vegan. Adonis2 was used to 
estimate the contribution of the metBMI group to the community vari-
ation, followed by a pairwise multilevel comparison using the wrapper 
pairwise.adonis with Bonferroni adjustment (Supplementary Table 19).

Differential abundance analyses were performed at the species 
level using ANCOM-BC version 1.4.0 (ref. 77) with covariates age and 
sex added to the formula (FDR < 0.05). We then evaluated medica-
tion confounding on the reported differentially abundant features 
using metadeconfoundR18, reporting only non-confounded (that is, 
no impact of the confounder) or strictly de-confounded (that is, the 
effect of the variable is independent of the confounder) features at an 
FDR of ≤0.1. Overall, the effect sizes and their direction were congru-
ent between ANCOM-BC and metadeconfoundR, and all significant 
features reported in ANCOM-BC displayed a significant effect size in 
metadeconfoundR. MetadeconfoundR was similarly used to eluci-
date whether the effect of a particular variable (for example, metBMI 
residuals) on a specific taxon was more closely related to another 
obesity measure. Similarly, gene richness was included as a predictor 
to understand whether changes in overall gene richness underlie dif-
ferentially abundant features or whether these are indeed unlinked to 
the general loss of richness observed in obesity and metabolic health 
deterioration. Low-abundant taxa were defined as less than 5% of the 
mean total abundance. Differential abundance of rarefied GMMs was 
conducted along with de-confounding directly in metadeconfoundR18.

Partial Spearman’s ranked-sum correlations are reported between 
the overlapping 46 differentially abundant taxa in all four obesity fea-
tures and other covariates. Heatmaps were produced using the package 
ComplexHeatmap78 and show only taxa with at least one significant 
correlation in the set of metadata variables given at an FDR-adjusted 
significance of less than 0.1. Tiles showing FDR < 0.01 and FDR < 0.05 
are depicted with ‘*’ and ‘+’, respectively.

Correlations and metadeconfoundR analysis for species–host 
associations. We computed Spearmanʼs correlations between selected 
microbial species and host features (metabolites, diet, physical activ-
ity and clinical metrics), retaining associations with FDR < 0.1 and 
Spearman’s ρ > 0.1. A subsequent metadeconfoundR18 analysis was 
employed to filter associations that were unconfounded by other 
variables, including gene richness.

Comparative microbiota network analysis. Signed networks were 
constructed using NetCoMi version 1.1.0 (ref. 79) using the 500 species 

exhibiting the highest variance in HmetBMI and LmetBMI subsets. 
Associations were analyzed using a two-sided Spearmanʼs correlation 
with a threshold of 0.3 after total sum scaling (TSS) normalization and 
multiplicative zero replacement. Network properties were analyzed 
and visualized using the netAnalyze function. A differential network 
was constructed using the diffnet function, with Fisher tests and local 
FDR adjustment.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The IGT-microbiota and SCAPIS deidentified datasets used in this 
study are accessible to qualified researchers via a data use agreement 
for research purposes after consideration from the data accession 
committee. For data access inquiries, please contact Fredrik Bäck-
hed; responses will be provided within seven business days. The raw 
whole metagenome shotgun (WMGS) data are available upon reason-
able request. Whole metagenomic data are deposited at the Euro-
pean Nucleotide Archive under accession numbers PRJEB100670 
and ERP174669.

Code availability
No specialized in-house code was used for this study. All software 
used for the data analyses in this study is publicly available and cited 
in Methods.
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Extended Data Fig. 1 | Study overview. Distribution of BMI (a,d), age (b,e), and metabolic features (c,f). N, number of participants. Solid and dashed lines indicate 
kernel density estimates, BMI and age means. P values of two-sided Wilcoxon-rank sum test shown for comparisons between females and males. Summary values 
available in Supplementary Tables 1 and 3.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Variance explained (R2) across measures of obesity 
and adiposity and across omics datasets (inter-omics). a. Bar plots show the 
proportion of variance explained (hold-out R2) for each obesity and body-
composition trait when predicted from individual data layers: gut-metabolic 
modules (GMMs), diet, KEGG orthologues, metagenome-assembled genomes 
(MAGs), serum metabolites, circulating proteins, or their combination (All 
omics). Each dot is the R² obtained in one-fold of ten-fold ridge-regression 
cross-validation; bar height is the median across folds (n = 10). Letters indicate 
pairwise differences: bars that share a letter do not differ significantly (two-sided 
Wilcoxon rank-sum test, Benjamini–Hochberg adjusted across all feature-space 
comparisons). P values and summary statistics are found under Supplementary 
Table 2. b. Boxplots of variances explained by diet, proteins, metabolites, GMMs, 
KEGGs, MAGs and all omics combined for BMI. Box plots display the median, 
interquartile range (IQR) with whiskers specifying ±1.5*IQR of R² distribution 
per feature obtained in the 10-fold cross-validation (n = 10) and plotted points 
denoting outliers. Source data under Supplementary Table 2. c. Density plots 

of variance explained (median R²) by predictors across omics layers. Each line 
represents the distribution of variances explained for features in either the 
metabolites or proteins feature space, stratified by the predictor used. Colors 
correspond to the source omics layer used for prediction. d. Bar plots show the 
median proportion of variance explained for microbiome gene richness derived 
from a 10-fold cross-validation (n = 10), when predicted from individual data 
layers: diet, metagenome-assembled genomes (MAGs), serum metabolites, and 
circulating proteins e. Boxplots of variance distribution for single metagenomes 
(MAGs), which could be robustly explained by diet, metabolites, and proteins 
(1438 MAGs from Diet, 1440 for metabolites and 1440 from proteins). Three R2 
values are derived for each MAG in a regression model with 10-fold internal cross- 
validation and three repeats (nDiet= 4318, nMetabolomics = 4320, nProteomics = 4320). 
Boxplots show the median and interquartile ranges (IQR); whiskers extend to 
±1.5*IQR from the quartiles and plotted points denote outliers. Source Data 
under Supplementary Table 3.
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Extended Data Fig. 3 | Test diagnostics of the ridge regression model.  
a. two-sided Spearman’s correlation (here denoted as R) with its corresponding  
P Value between the ground truth and metabolites-predicted BMI (metBMI) in the 
IGT-test set (n = 192). The dashed black line is the linear regression line. b,c Violin 
plots of metBMI residuals distributions within BMI-categories in the entire IGT-
cohort, P is derived from a two-sided Kruskall Wallis test (b) and between training 
and extended test set, the sample size is depicted in the respective boxplot and 
P is derived from a two-sided Wilcoxon rank-sum test (c). d. Boxplot showing the 

distribution of metBMI residuals within the IGT cohort, including the training 
and extended test sets (as in c), along with group classifications based on metBMI 
residuals and WHO BMI categories. Boxplots show the median and interquartile 
ranges (IQR); whiskers extend to ±1.5*IQR from the quartiles and plotted points 
denote outliers. Boxplots are labeled with the number of individuals within 
each of the metBMI-classification group, and colored according to these groups 
(green for normal weight, taupe for individuals with overweight, purple for 
individuals with obesity, light green for LmetBMI and light purple for HmetBMI).
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Extended Data Fig. 4 | Validation of the metBMI model in the SCAPIS cohort 
and links to metabolic heterogeneity. a. two-sided Spearman’s correlation 
(denote here as R) between ground truth BMI and metabolites-predicted BMI 
(metBMI). The dashed line is the linear regression line. Each dot represents one 
individual, colored according to the final metBMI classification group: green for 
normal weight (n = 79), taupe for individuals with overweight (n = 157), purple 
for individuals with obesity (n = 134), light green for LmetBMI (n = 43), and 
light purple for HmetBMI (n = 53). b. Comparisons in relevant anthropometric, 

metabolic, and lifestyle features between the different metBMI groups. Feature 
values were Z-score transformed prior to plotting, and P values are derived 
from a two-sided Wilcoxon rank-sum test and adjusted for multiple testing, 
ad modum Benjamini-Hochberg, across the five metBMI groups. Boxplots are 
colored according to these groups and show the median and interquartile ranges 
(IQR); whiskers extend to ±1.5*IQR from the quartiles and plotted points denote 
outliers. Sample size per group as in a.
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Extended Data Fig. 5 | Metabolomics-derived BMI in cardiometabolic risk and 
outcome. a. Forest plot shows adjusted odds ratios (ORs) and 95 % confidence 
intervals for six cross-sectional outcomes in the SCAPIS cohort: coronary artery 
calcium (CAC), carotid plaque, metabolic syndrome (MetS; NCEP criteria), 
non-alcoholic fatty liver disease (NAFLD), combined glucose intolerance + newly 
detected type 2 diabetes (CGI T2D) and screen-detected T2D (sample sizes, left). 
Data are presented as odds ratio estimated (centre points) with 95% confidence 
intervals (horizontal bars) with lower and higher confidence interval limits from 
multivariable logistic regression per 1 SD increase in the predictor (BMI, metBMI 
or both in the nested model) and plotted on a log10 scale. Models adjust for age, 
sex, waist-to-hip ratio, HDL, LDL, and total triglyceride levels, mean systolic and 
diastolic blood pressure, glucose levels, and statin use. The dashed line marks 

OR = 1. P values are derived from two-sided Wald tests for BMI/metBMI. For the 
nested model, P is derived from a likelihood-ratio test vs BMI-only model. Sample 
sizes per outcome; CAC (n = 212), carotid plaque (n = 268), metabolic syndrome 
(n = 163), MASLD (n = 78), CGI/T2D (n = 136), T2D (n = 52). b. boxplots depicting 
differences in baseline BMI, and 12-month BMI in bariatric surgery (n = 75) 
between LmetBMI and HmetBMI. P values for the two-sided Wilcoxon-rank-sum 
test are displayed, and sample sizes for each group are shown. Boxplots show 
the median and interquartile ranges (IQR); whiskers extend to ±1.5*IQR from the 
quartiles and plotted points denote outliers. c. Two-sided Pearson’s correlation 
between ground-truth BMI at baseline and BMI loss at 12 months after bariatric 
surgery (n = 75), with the corresponding P value. The dashed line is the linear 
regression line.
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Extended Data Fig. 6 | Correlation analysis for metBMI and metBMI residuals 
with metabolic, anthropometric, and polygenic risk score. a. Two-sided partial 
Spearman’s rank correlations of available metadata, corrected for age, sex, and 
BMI for metBMI and metBMI residuals, and for age and sex for BMI in the IGT-
microbiota cohort (n = 1,408). Only correlations significant after multiple testing 
correction ad modum Benjamini-Hochberg (Q values < 0.05) and with absolute 
correlation coefficients > 0.2 are shown. Colors indicate the correlation with the 
specific obesity metric: orange for metBMI, green for BMI, and purple for metBMI 
residuals. Corresponding values are found under Supplementary Table 9. b. Two-
sided Spearman’s rank correlation of calculated PGS using weighted effect alleles 
with their predicted and other anthropometric and metabolic traits, metBMI 
and metBMI residuals, as well as microbiome features such as microbiome gene 

richness and divergence (average sample dissimilarity based on Bray-Curtis 
distance) the IGT-microbiota cohort (n = 1,408). Signs and weights of effect 
sizes are indicated by marker color and size of the circle, as shown in the legend. 
Significant correlations are denoted with an Asterisk. Abbreviations: WHR 
(waist-to-hip ratio), SAT (subcutaneous adipose tissue), IMAT (intramuscular 
adipose tissue), LDL (low-density lipoprotein), HOMA-IR (Homeostatic Model 
Assessment of Insulin Resistance), VAT (visceral adipose tissue area), HOMA-B 
(Homeostatic Model Assessment of Beta-cell function), HDL (high-density 
lipoprotein), BMI (body mass index), [Abd] VAT ([abdominal] visceral adipose 
tissue), PGS (polygenic risk score), WHRadjBMI (WHR adjusted for BMI), HFC 
(hepatic fat content).
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Extended Data Fig. 7 | Microbiome gene richness along BMI, metBMI and 
metBMI residual spectrum. Two-sided Spearman’s correlation between 
Z-transformed gound-truth BMI, metBMI, and metBMI residuals with gut 
microbiome gene richness in the IGT-microbiota cohort. The lines correspond to 
the linear regression lines colored according to the relevant correlated variable 

(green for BMI, purple for metBMI residuals, and orange for metBMI). Relevant 
correlation coefficients and P values are denoted and colored according to 
the specific variable in the legend, top left. Rho depicts Spearman’s ranked 
correlation coefficient.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Bacterial network topology in HmetBMI and LmetBMI 
and altered global influence of specific taxa in the network structure of 
HmetBMI and LmetBMI. a. Species-level bacterial association networks for 
high (HmetBMI) and low (LmetBMI) metabolic BMI groups, based on two-sided 
Spearman’s correlations of CLR-transformed abundances (sparsification 
threshold ≥ 0.3). Analysis was restricted to the 500 most variable species, 
with zeros imputed via multiplicative simple replacement. Node size reflects 
eigenvector centrality; node color indicates clusters defined by greedy 
modularity optimization. Blue and red edges denote positive and negative 
associations, respectively. The Layout from the HmetBMI network was applied 
to both groups, with unconnected nodes omitted for a better overview. 

b. Differential association networks showing connected nodes if they are 
differentially associated between HmetBMI and LmetBMI. The Fisher’s Z-test is 
applied to identify differentially correlated taxa. Multiple testing adjustment 
is performed by controlling the local false discovery rate. Shown are two-sided 
Spearman’s rank correlations after clr (centered log-ratio) transformation of 
abundances on species levels, applying a sparsification threshold of 0.3 (only 
absolute correlations ≥0.3 are retained). The analysis included the 500 species 
with the highest variance, and zeros were replaced using the multiplicative 
simple replacement method. Edge colors represent the direction of the 
associations in the two groups as indicated in the legend.
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Extended Data Fig. 9 | Shared microbiome features of obesity measures 
and their metabolic associations. a. Barplots show number of differentially 
abundant taxa across metBMI residuals, BMI, VAT attenuation, and area, 
categorized as confounded (orange) or unconfounded (green) by medication. 
Circles above bars indicate proportions of low-abundant features (see methods, 
shaded by confounding status). Low-abundant species constituted 33%, 31%, 
and 8% of taxa along BMI, VAT attenuation, and VAT area, respectively, with ~ 50% 

confounded by medication (except VAT area). b. Venn Diagram illustrates taxa-
overlaps between traits (ANCOM-BC, Cohen’s D > 0.05, Q value < 0.1). c. Heatmap 
displays two-sided Spearman’s correlations between shared species and clinical 
markers (Q value < 0.1) in the IGT-microbiota cohort (n = 1,408). Marker color 
indicates effect direction. Bar plots show the percentage of features in the 
heatmap significantly correlated with the covariate. d. Similar to c, showing taxa 
uniquely associated with metBMI residuals. ** P value < 0.01, *** P value < 0.001.
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Extended Data Fig. 10 | Top metabolites predictive of metBMI show wide 
associations with microbiome species. a. Contribution of top predictor 
metabolites (selected by recursive feature elimination or retained across all 10 
LASSO models) to the model. Signed effect sizes are depicted by color (purple for 
higher predicted metBMI with positive coefficients, green for lower predicted 
metBMI with negative coefficients). Metabolites are labeled and colored by 
subpathway, with each subpathway represented by a unique tile color.  

b. two-sided Spearman’s correlations between 708 gut microbial species and 55 
metabolites from the top 66 metabolites selected in recursive feature elimination 
and all 10 LASSO models (shown in a) in the IGT-microbiota cohort (n = 1,408). 
Displayed are Spearman’s Rho values for significant associations after adjusting 
for multiple testing ad modum Benjamini–Hochberg (Q value < 0.05). Metabolite 
labels are colored based on their effect direction in metBMI prediction (purple 
for higher metBMI, green for lower metBMI).
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